

WINTER – 19EXAMINATION Model Answer

Subject Name: Embedded System

Subject Code:

22532

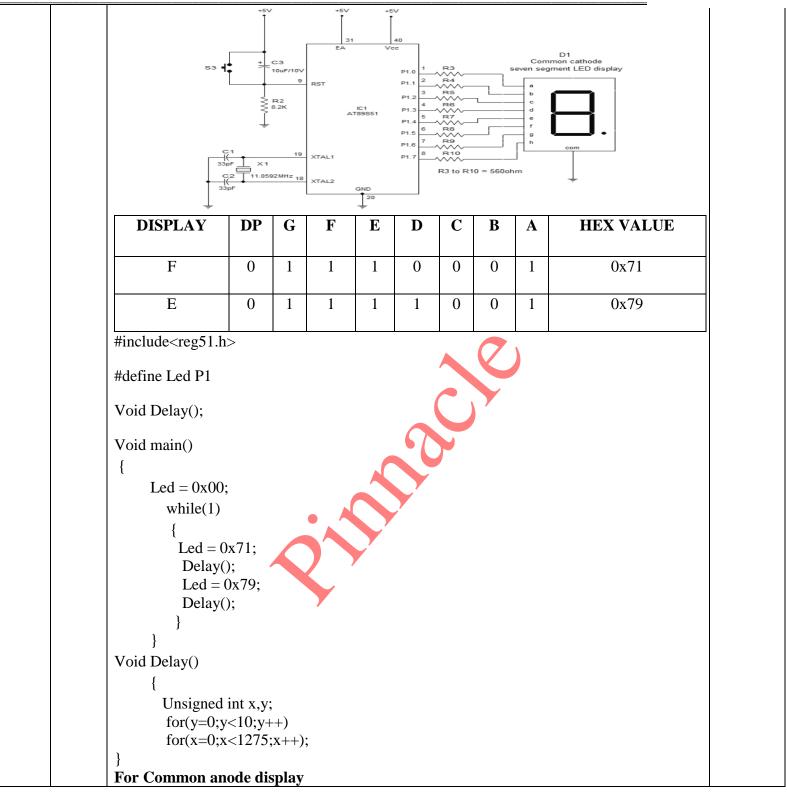
- **Important Instructions to examiners:**
 - 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
 - 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
 - 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
 - 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub			Answer			Marking	
No.	Q. N.			_ (7)		Scheme	
Q.1		Attempt any FIV	VF of the fol	llowing.			10-Total	
Q.1		Attempt any FI	V L2 Of the for	nowing.			Marks	
	a)	List out four type	es of embed	ded systems.			2M	
	Ans:	1. Small Sca					(any 4:	
		2. Medium S					½ mark	
		3. Sophistica					each)	
		4. Stand Alo					,	
		5. Real Time						
		6. Networked						
	b)	7. Mobile En					2M	
			_	bedded System.				
	Ans:	1) Design and 2) Cost	Efficiency	Y			(any 4:	
		3) Accessibili	fx7				½ Mark	
		4) Maintenand	•				each)	
		5) Redundancies						
	c)	State the use of MAX 232 in communication.						
	Ans:	MAX 232 is line driver that converts from RS232 voltage levels to TTL voltage levels & vice versa in serial communication						
	1700 Versa in serial communication							
	d)	Illustrate any tw	o logical ope	erators used in C with their	r examples.		2M	
	Ans:	Sr	Operator	Bitwise logical operator	Example		(any 2:	
		no:	•		•		1mark	
		1.	NOT	~	Y= ~A		each)	
							,	
		2.	AND	&	Y= A&B	1		

tified)

DEGREE & DIPLOMA
ENGINEERING

ISO/IEC		tilled)				ENGINEERING
		3.	OR		Y= A B	
		4.	EX-OR	^	Y=A ^B	
	e)	State two exam	ples of RTOS.			2M
	Ans:	 LynxOS. OSE. QNX. RTLinux VxWork Window 	 S.			(any 2: 1 mark each)
	f)	Develop a 'C' n	rogram to trans	fer the data from port	PO to port P1.	2M
	Ans:	#include <reg51. (void="" a="" char="" do="" for="" main="" output="" p0="" p1="X;//" po="" td="" unsigned="" void="" while(1)="" x="P0;//read" {="" }<=""><td>; as input port s output port rever</td><td></td><td>2</td><td>(correct program : 2 marks) Any other correct program logic should be given marks</td></reg51.>	; as input port s output port rever		2	(correct program : 2 marks) Any other correct program logic should be given marks
	g)	Sketch pin-out	diagram of LM3	5 and label its pin.		2M
	Ans:		Q'	LM35 1 2 3 VC Out Gnd		2M
Q.2		Attempt any THREE of the following:				
	a)	Compare featur	res of PIC $\overline{and A}$	VR microcontrollers (a	nny four)	4M
	Ans:	Parameters	3	PIC	AVR	(any 4
		Bus width		8/16/32-bit	8/32-bit	features:
		Communicati Protocols	,	USART, LIN, CAN, nernet, SPI, I2C	UART, USART, SPI, I2C, (special purpose AVR suppor CAN, USB, Ethernet)	1 mark each)
		Speed		truction cycle, operating ency upto 20MHz.		



		25MHz.	
Memory	SRAM, FLASH,EEPROM	Flash, SRAM, EEPROM	
ISA	Some feature of RISC	RISC	
Memory Architecture	Harvard architecture	Modified	
Power Consumption	Low	Low	
Families	PIC16,PIC17, PIC18, PIC24, PIC3	2 Tiny, Atmega, Xmega, special purpose AVR	
Manufacturer	Microchip Average	Atmel	
Popular Microcontrollers	PIC18fXX8, PIC16f88X, PIC32MXX	Atmega8, 16, 32, Arduino Community	
		ort 2 as output port and port 1	4M
P2=0X00;// P2 as ou P1=0XFF;//P1 as inp	put port		(correct progrates as there ways o writing same progra
Compare synchron	ous and asynchronous communica	ation.(any four points)	4M
			(any
		Two different clocks are used for	points
transı	mitter and receiver b	oth transmitter and receiver	1marl
	Memory Architecture Power Consumption Families Manufacturer Popular Microcontrollers Write a C language and port 3 as input #include <reg51.h> void main (void) { unsigned char X,Y P0=0X00; // P0 as of P2=0X00; // P1 as input P3=0XFF; // P1 as input</reg51.h>	ISA Some feature of RISC Memory Harvard architecture Power Low	Memory SRAM, FLASH, EEPROM Flash, SRAM, EEPROM ISA Some feature of RISC RISC Memory Harvard architecture Modified Architecture Power Low Low Low Low Consumption Eamilies PIC16, PIC17, PIC18, PIC24, PIC32 Tiny, Atmega, Xmega, special purpose AVR Manufacturer Microchip Average Atmel Popular PIC18fXX8, PIC16f88X, Microcontrollers PIC32MXX Atmega8, 16, 32, Arduino Community Write a C language program to operate port 0 and port 2 as output port and port 1 and port 3 as input port. #include <reg51.h> woid main (void) { unsigned char X,Y PO=0X00; // PO as output port P1=0XFF; //P1 as input port P1=0XFF; //P1 as input port P3=0XFF; // P3 as input port P3=0XFF; // P</reg51.h>

					SINEERING
		3.	Start and stop bits are not used	Start and stop bits are used	
		4.	Used for data transfer rate >= 20	Used for data transfer rate <= 20	
			Kbps	Kbps	
		5.	Used for transferring block of data at	Used to transfer one character at a	
			a time	time	
		6.	Character is received at a constant	Character is received at a any rate	
			rate		
		7.	Less reliable	More reliable	
		Explain t	he need to consider following factors in d	esign matrix of embedded system:	
		(i)	Processor		
	d)	(ii)	Memory		4M
		(iii)	Power		
		(iv)	Non- recurring engineering cost.		
	Ans:	registe The control Power 2. Memore provis ROM system 3. Power lifeting heat 4. NRE design	er width required. Powerful 8bit, 16 bit, 32 lock speed and memory addressing capability of DSPs are available for real time analysis ory: Designer has to make an estimate for sion for expansion. There are different type, EEPROM etc. Flash memories are used ans can be ported in target hardware system. T: It is the amount of power consumed the of battery, or cooling requirements of the cost (Non-Recurring Engineering cost) and the system. Once system is designed factured without incurring any additional designed.	bit & 64bit processors are available. It is also measure of processor power. It is the one-time monetary cost of gned any number of units can be	
Q.3		Attempt	any THREE of the following:		12-Total Marks
	a)		rcuit diagram showing interfacing of one gram to display 'F' and 'Fi' alternately.	7-segment display to 89C51. Write	4M
1	Ans:	Note:			
	11100				
		• Sinc	ee Fi cannot be displayed in single digit seve	en segment display, program is written	
			ce Fi cannot be displayed in single digit seve isplay F and E alternately.	en segment display, program is written	
		to d	1 •		
	7444	to d	isplay F and E alternately.		
		to d Botl give	isplay F and E alternately. n common anode and common cathode inter	facing is given here. Marks to be	

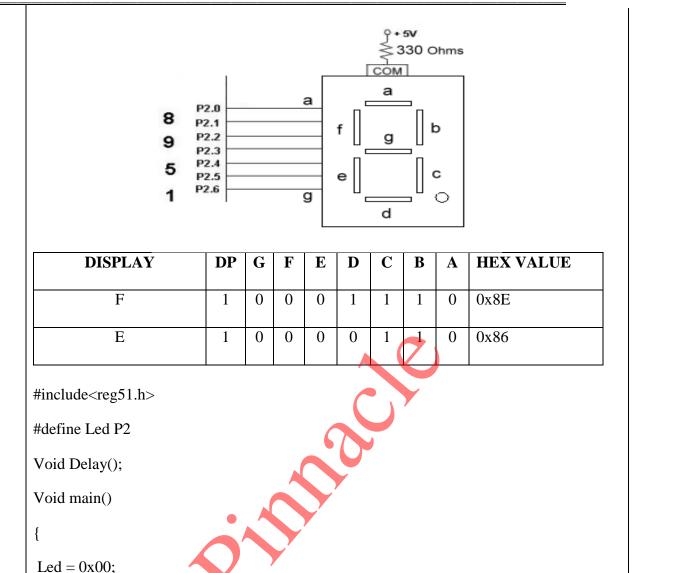
while(1)

}

b)

Ans:

Void Delay()


Unsigned int x,y;

for(y=0;y<10;y++)

other to finish, and thus neither ever does.

Led = 0x8E; Delay(); Led = 0x86; Delay();

Explain the term 'Deadlock'. State reason of occurance.

• Assume thread/process T1 has exclusive access to resource R1.

for(x=0;x<1275;x++);

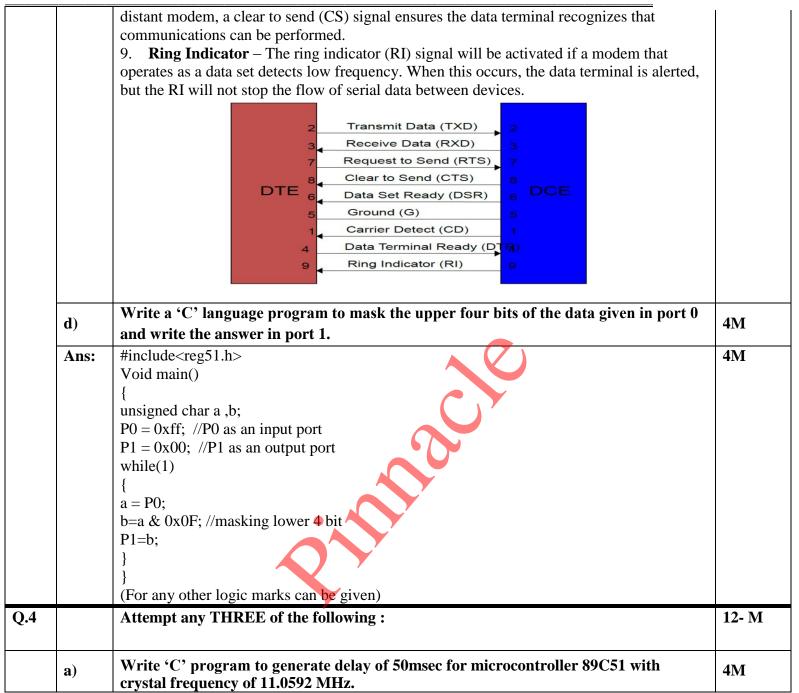
A deadlock is a situation where in two or more competing actions are each waiting for the

2M for

Deadloc

4M

k



	If T1 needs exclusive access to R2 and T2 needs exclusive access to R1, Neither thread can continue.	Explana
	They are deadlocked.	for
	The simplest example is that of two tasks: 1 and 2. Each task requires two mutexes: A and B. If Task 1 takes mutex A and waits for mutex B while Task 2 takes mutex B and waits for mutex A, then each task is waiting for the other to release the mutex.:	Reasons
	These tasks may run without problems for a long time, but eventually one task may be preempted in between the wait calls, and the other task will run. In this case, Task 1 needs	
	mutex B to be released by Task 2, while Task 2 needs mutex A to be released by Task 1. Neither of these events will ever happen.	
	printer	
	holds holds Task 1 wants wants Task 2	
	Causes of Deadlock	
	Mutual exclusion: only one process at a time can use a resource	
	Hold and wait: A process holding at least one resource is waiting to acquire additional	
	resources held by other resources	
	No preemption: A resource can be released only voluntarily by the process holding it after	
	that process has completed the task Circular wait: A set of processes- Proto PnP1 waiting for the resource held by P2, P2	
	waiting for resource held by P3 etc.	
c)	Explain the process of handshaking in RS232 standard based communication.	4M
Ans:	RS232 monitoring hardware establishes a connection between data terminal equipment	
-	(DTE) and data communication equipment (DCE). In order to link these devices, an RS232	
	D9 pinout is essential, as this pinout will allow you to connect two devices successfully.	
	An RS232 pinout 9 pin cable features nine pins:	
	1. Data Carrier Detect – After a data terminal is detected, a signal is sent to the data set	
	that is going to be transmitted to the terminal.	
	2. Received Data – The data set receives the initial signal via the receive data line (RxD).	
	3. Transmitted Data – The data terminal gets a signal from the data set, a confirmation that there is a connection between the data terminal and the data set.	
	that there is a connection between the data terminal and the data set. 4. Data Terminal Ready – A positive voltage is applied to the data terminal ready	
	4. Data Terminal Ready – A positive voltage is applied to the data terminal ready (DTR) line, a sign that the data terminal is prepared for the transmission of data.	
	5. Signal Ground – A return for all the signals on a single interface, the signal ground	
	(SG) offers a return path for serial communications. Without SG, serial data cannot be	
	transmitted between devices.	
	6. Data Set Ready – A positive voltage is applied to the data set ready (DSR) line, which	
	ensures the serial communications between a data terminal and a data set can be completed.	
		1
	7. Request to Send – A positive voltage indicates the request to send (RTS) can be	
	*	
	7. Request to Send – A positive voltage indicates the request to send (RTS) can be	

Ans:	Use Timer 0, mode 1 (16-bit) to create the delay. Assume XTAL=11.0592 MHz=> T=1.085µs Count=50ms/1.085µs = 46083	1M for count
	Initial count = 65536-46083 =19453, Count in Hex = 4BFDH	calculati
	#: 1.1 < 51.5	on, 3M
	#include <reg51.h> void Delay(void);</reg51.h>	for
	sbit mybit=P1^5;	Progra
	void main(void)	m
	{	
	while (1)	
	{	
	mybit=~mybit; //toggle P1.5	
	Delay();	
	}}	
	void Delay(void)	
	\sim \sim	
	TMOD=0x01; // Timer 0, mode 1	
	TL0=0xFD;	
	TH0=0x4B;	
	TR0=1; while (TF0==0);	
	TR0=0;	
	TF0=0;	
	}	
1-)	(For any other logic marks can be given)	43/4
b)	List out eight features of USB.	4M
Ans:	The Universal Serial Bus has the following features:	4 points. 1M each
	• The computer acts as the host.	INI Cacii
	• Up to 127 devices can connect to the host, either directly or by way of USB hubs.	
	• Individual USB cables can run as long as 5 meters; with hubs, devices can be up to 30	
	meters (six cables' worth) away from the host.	
	• With USB 2.0, the bus has a maximum data rate of 480 megabits per second (10 times	
	the speed of USB 1.0).	
	• A USB 2.0 cable has two wires for power (+5 volts and ground) and a twisted pair of	
	wires to carry the data. The USB 3.0 standard adds four more wires for data	
	transmission. While USB 2.0 can only send data in one direction at a time (downstream	
	or upstream), USB 3.0 can transmit data in both directions simultaneously.	
	 On the power wires, the computer can supply up to 500 milliamps of power at 5 volts. 	
	A USB 3.0 cable can supply up to 900 milliamps of power at 5 voits.	
	A OBD 3.0 cause can suppry up to 300 miniamps of power.	<u> </u>

tified)

DEGREE & DIPLOMA
ENGINEERING

	Low-power devices (such as mice) can draw their power directly from the bus. High-	SINEERING
	power devices (such as printers) have their own power supplies and draw minimal	
	power from the bus. Hubs can have their own power supplies to provide power to	
	devices connected to the hub.	
	• USB devices are hot-swappable , meaning you can plug them into the bus and	
	unplug them any time. A USB 3.0 cable is compatible with USB 2.0 ports you	
	won't get the same data transfer speed as with a USB 3.0 port but data and power	
	will still transfer through the cable.	
	 Many USB devices can be put to sleep by the host computer when the computer 	
	enters a power-saving mode.	
c)	Draw the interfacing diagram of ADC with 89C51 and state the function of SOC,	4M
,	EOC and OE pins.	
Ans:	 SOC [Start of conversion]: When High to low signal is appearing to this pin of ADC; ADC then starts conversion. EOC [End of conversion]: ADC sends this high EOC signal to Micro-Controller to indicate completion of conversion. OE [Output Enable]: When a high signal is applied to this pin, the output latch of ADC get enables and the converted data is then available to Micro-Controller. 	function s – 1M each
	P1.0-1.7 P3.0 P3.1 8051 P3.2 P3.8 P3.4 P3.5 P3.7 P3.7 P3.0 P3.1 P3.2 P3.8 P3.4 P3.5 P3.7 P3.7 P3.0 P3.1 P3.1 P3.1 P3.2 P3.8 P3.7 P3.8 P3.8 P3.7 P3.8 P3.7 P3.8 P3.8 P3.8 P3.7 P3.8 P3.8 P3.8 P3.8 P3.8 P3.8 P3.8 P3.8	diagram – 1M
d)	Explain 'CAN' bus protocol and list out its two applications.	4M
Ans:	Controlled Area Network [CAN]:- Can is mainly used in automotive electronics. CAN bus is a standard bus in distributed network. It has a bi-directional serial line which receives or sends a bit at an instance by operating at maximum rate of 1Mbps. It employs a twisted pair connection to each node. The pair can run to a maximum length of 40m.	explanat ion – 3M, applicati ons – ½
	CAN_H CAN_L D	M each
	Data Frame Data Frame Data Field CRC D A D E C K L EOF ITM Bus idle Arbitration Control Field CRC Field ACK Field	
	OUD CENTEDS.	•

		EN	GINEERING					
		Field and its Description of each field in CAN frame Length						
		1 st field of 12 It is called arbitration field. It contains the packet 11-bit destination address and the RTR [Remote Transmission Request].						
		When this bit is at 1 this indicates the packet is for the destination address. If this packet for request for a data from a device						
		defined by identifier.						
		The device is at destination address specified in the field. 2 nd field of 6 bits It is called a control field. The 1 st bit id the identifier extension. The 2 nd bit is always 1, and the last 4 bits are code for data length.						
		3 rd field of 0-64 Its length depends on data length code in the control field.						
		4 th field of 16- bits { 3 rd if data field has no bit present}						
		5 th field of 2 bits 1 st field is the ACK slot. The sender sends it as 1 and RX sends back 0 in this slot when the receiver detects an error in the reception. Sender after sensing 0 in the ACK slot transmits the data						
		frame. The 2 nd bit is the ACK delimiter bit. It signals the end of the ACK field. If the transmitting node does not receive and ACK						
		of data frame within a specified time slot it should retransmit. 6 th field of 7-bits It is for end of the frame specification and has seven 0's.						
		Applications: Copiers, Telescopes, Medical instruments, Elevator controllers, Automobile industry.						
	e)	Sketch interfacing diagram to interface LCD display with 89C51.	4M					
		P1.0 P1.1 P1.2 P1.3 P1.3 P1.4 P1.4 P1.4 P1.5 P1.6 P1.5 P1.6 P1.6 P1.7 P3.3 P3.3 P3.2 P3.4						
Q.5		Attempt any TWO of the following:						
			Total Marks					
	(a)	Explain resource allocation and interrupt handling function of RTOS.	6M					
	Ans:	i) Interrupt Handling:						
		Normal program execution 3. Processor state	3M-					
		2. Interrupt saved 4. Interrupt routine runs occurs	Interrup t					
		6. Processor state restored 5. Interrupt routine	Handlin					
		7. Normal program execution	g,					
		resumes	3M-					
			Resourc e					
		When an interrupt occurs, interrupt Service Routines (ISR) is run. Most interrupt routines in RTOS Copy peripheral data into a buffer, Indicate to other code	Allocati					
		that data has arrived and Acknowledge the interrupt (tell hardware)	on					
		RTOS normally disable the interrupts while handling critical section and enable after the critical section has been executed. Interrupt latency is a factor to look for, when selecting a						

tified)

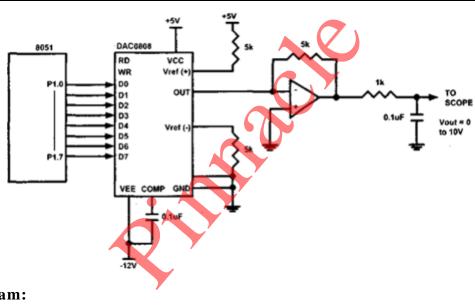
RTOS.

Interrupt latency = Maximum amount of time interrupts are disabled+ time to start execution of first instruction of ISR. It is desirable that RTOS should have minimum interrupt latency

ii) Resource allocation:

Sharing of resources by competing tasks as per their execution schedules is a function RTOS. This means that tasks should have the required resources allocated to them whenever they are needed. The Operating System allocates resources when a task need them. When the task terminates, the resources are de-allocated, and allocated to other tasks that need them. Resources can be allocated in Round Robin method or Priority based. Some resources are non-Pre emptible eg. Mutex.

In Round Robin, tasks are scheduled in FIFO manner. Fixed Time quantum is given to the tasks after which it is pre-empted. Priority Scheduling, resources are allocated to processes according to priorities.


(b) Write a 'C' language program for 89C51 to generate triangular waveform.

6M

2M-

Diagram

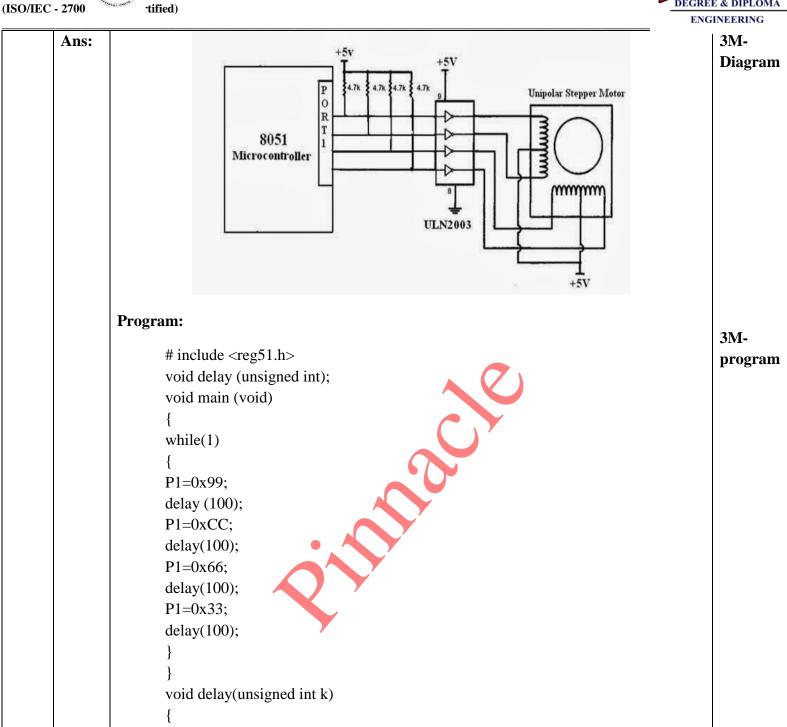
Ans:

Program:

```
#include < reg51.h>
unsigned char d;
void main(void)
{
while(1)
{
for(d=0; d<255; d++)
{
P1 = d;
}
for(d=255; d>0; d--)
{
P1 = d;
}
```

4M-Progra m

		ENG	
		(For any other relevant logic marks can be given)	
	(5)	Write a 'C' language program for serial communication to transfer letter 'M' serially	(M
	(c)	at 9600 baud continuously.	6M
	Ans:	#include <reg51.h></reg51.h>	4M
		void main(void)	Progra
			m, 2 M
		TMOD = 0x20; //Initialize timer 1 in mode 2	· ·
		TH1 = $0xFD$; //baud rate 9600	commen
		SCON = $0x50$; //start serial communication (8bit, 1 stop bit,	ts
		REN)	
		TR1 = 1; //start timer 1	
		while(1)	
		\{	
		SBUF='M'; // place value in buffer	
		while(TI==0);	
		TI=0; // clear TI	
			1000 / 1
Q.6		Attempt any TWO of the following:	12Total
-			Marks
	(a)	List out characteristics of RTOS and explain any four characteristics.	6M
	Ans:	Characteristics of RTOS:	2M list,
		1. Reliability	ĺ
		2. Consistency	1M each
		3. Predictability	characte
			ristic
		4. Performance	explanat
		5. Scalability	ion
		6. Compactness Polichility: A relichia recoming one that is evallable (continues to provide convice) and	1011
		• Reliability: A reliable system is one that is available (continues to provide service) and does not fail. Embedded systems and hence RTOS used in such systems must be	
		reliable.	
		G to All I will be DEGGED I I I I I'm	
		• Consistency: A key characteristic of an RTOS is the level of its consistency concerning the amount of time it takes to accept and complete an application's <u>task</u> ;	
		the variability is 'jitter'. A 'hard' real-time operating system has less jitter than a 'soft'	
		real-time operating system.	
		 Predictability: The RTOS used in this case needs to be predictable to a certain degree. 	
		The term deterministic describes RTOSes with predictable behavior, in which the	
		completion of operating system calls occurs within known timeframes.	
		 Performance: This requirement dictates that an embedded system must perform fast 	
		enough to fulfill its timing requirements.	
		 Scalability: Because RTOSes can be used in a wide variety of embedded systems, 	
		they must be able to scale up or down to meet application-specific requirements.	
		 Compactness: In embedded systems, where hardware real estate is limited due to size 	
		and costs, the RTOS clearly must be small and efficient. In these cases, the RTOS	
		and cools, the K105 clearly must be small and efficient. In these cases, the K105	1
		memory footprint can be an important factor	
	(b)	memory footprint can be an important factor. Compare:	6M



i)	RISC w	ith CISC processor		1M ea
	SR. NO.	RISC	CISC	
	1	Reduced instructions take 1 cycle	Complex instructions require multiple cycles	
	2	Only Load and Store instructions can reference memory	Many instructions can reference memory	
	3	Uses pipelining to execute instructions	Instructions are executed one at a time	
	4	Many general registers	Few general registers	
	5	Emphasis on software	Emphasis on hardware	
		Address and data memory	Program Memory Address CPU Address Data Mem ory	
	2	The Van Neumann architecture uses single memory for their instructions and data.	The Harvard architecture uses physically separate memories for their instructions and data.	
	3	Requires single bus for instructions and data	Requires separate & dedicated buses for memories for instructions and data.	
		Its design is simpler	Its design is complicated	
	4			
	5	Instructions and data have to be fetched in sequential order limiting the operation bandwidth.	Instructions and data can be fetched simultaneously as there is separate buses for instruction and data which increasing operation bandwidth.	
		Instructions and data have to be fetched in sequential order limiting the operation	Instructions and data can be fetched simultaneously as there is separate buses for instruction and data which increasing operation	

unsigned int x,y; for (x=0;x< k;x++)for (y=0;y<1275;y++);

}

